Actual source code: dsnhepts.c

slepc-3.15.0 2021-03-31
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2021, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    DSNHEPTS: a special variant of NHEP to be used in two-sided Krylov solvers

 13:    DS_MAT_A - upper Hessenberg matrix obtained from Arnoldi
 14:    DS_MAT_B - upper Hessenberg matrix obtained from Arnoldi on the transpose
 15:    DS_MAT_Q - orthogonal matrix of (right) Schur vectors
 16:    DS_MAT_Z - orthogonal matrix of left Schur vectors (computed as Schur vectors of B)
 17:    DS_MAT_X - right eigenvectors
 18:    DS_MAT_Y - left eigenvectors (computed as right eigenvectors of B)
 19: */

 21: #include <slepc/private/dsimpl.h>
 22: #include <slepcblaslapack.h>

 24: typedef struct {
 25:   PetscScalar *wr,*wi;     /* eigenvalues of B */
 26: } DS_NHEPTS;

 28: PetscErrorCode DSAllocate_NHEPTS(DS ds,PetscInt ld)
 29: {
 30:   DS_NHEPTS      *ctx = (DS_NHEPTS*)ds->data;

 34:   DSAllocateMat_Private(ds,DS_MAT_A);
 35:   DSAllocateMat_Private(ds,DS_MAT_B);
 36:   DSAllocateMat_Private(ds,DS_MAT_Q);
 37:   DSAllocateMat_Private(ds,DS_MAT_Z);
 38:   PetscFree(ds->perm);
 39:   PetscMalloc1(ld,&ds->perm);
 40:   PetscLogObjectMemory((PetscObject)ds,ld*sizeof(PetscInt));
 41:   PetscMalloc1(ld,&ctx->wr);
 42:   PetscLogObjectMemory((PetscObject)ds,ld*sizeof(PetscScalar));
 43: #if !defined(PETSC_USE_COMPLEX)
 44:   PetscMalloc1(ld,&ctx->wi);
 45:   PetscLogObjectMemory((PetscObject)ds,ld*sizeof(PetscScalar));
 46: #endif
 47:   return(0);
 48: }

 50: PetscErrorCode DSView_NHEPTS(DS ds,PetscViewer viewer)
 51: {
 52:   PetscErrorCode    ierr;
 53:   PetscViewerFormat format;

 56:   PetscViewerGetFormat(viewer,&format);
 57:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) return(0);
 58:   DSViewMat(ds,viewer,DS_MAT_A);
 59:   DSViewMat(ds,viewer,DS_MAT_B);
 60:   if (ds->state>DS_STATE_INTERMEDIATE) {
 61:     DSViewMat(ds,viewer,DS_MAT_Q);
 62:     DSViewMat(ds,viewer,DS_MAT_Z);
 63:   }
 64:   if (ds->mat[DS_MAT_X]) { DSViewMat(ds,viewer,DS_MAT_X); }
 65:   if (ds->mat[DS_MAT_Y]) { DSViewMat(ds,viewer,DS_MAT_Y); }
 66:   return(0);
 67: }

 69: static PetscErrorCode DSVectors_NHEPTS_Eigen_Some(DS ds,PetscInt *k,PetscReal *rnorm,PetscBool left)
 70: {
 72:   PetscInt       i;
 73:   PetscBLASInt   mm=1,mout,info,ld,n,*select,inc=1,cols=1,zero=0;
 74:   PetscScalar    sone=1.0,szero=0.0;
 75:   PetscReal      norm,done=1.0;
 76:   PetscBool      iscomplex = PETSC_FALSE;
 77:   PetscScalar    *A,*Q,*X,*Y;

 80:   PetscBLASIntCast(ds->n,&n);
 81:   PetscBLASIntCast(ds->ld,&ld);
 82:   if (left) {
 83:     A = ds->mat[DS_MAT_B];
 84:     Q = ds->mat[DS_MAT_Z];
 85:     X = ds->mat[DS_MAT_Y];
 86:   } else {
 87:     A = ds->mat[DS_MAT_A];
 88:     Q = ds->mat[DS_MAT_Q];
 89:     X = ds->mat[DS_MAT_X];
 90:   }
 91:   DSAllocateWork_Private(ds,0,0,ld);
 92:   select = ds->iwork;
 93:   for (i=0;i<n;i++) select[i] = (PetscBLASInt)PETSC_FALSE;

 95:   /* compute k-th eigenvector Y of A */
 96:   Y = X+(*k)*ld;
 97:   select[*k] = (PetscBLASInt)PETSC_TRUE;
 98: #if !defined(PETSC_USE_COMPLEX)
 99:   if ((*k)<n-1 && A[(*k)+1+(*k)*ld]!=0.0) iscomplex = PETSC_TRUE;
100:   mm = iscomplex? 2: 1;
101:   if (iscomplex) select[(*k)+1] = (PetscBLASInt)PETSC_TRUE;
102:   DSAllocateWork_Private(ds,3*ld,0,0);
103:   PetscStackCallBLAS("LAPACKtrevc",LAPACKtrevc_("R","S",select,&n,A,&ld,Y,&ld,Y,&ld,&mm,&mout,ds->work,&info));
104: #else
105:   DSAllocateWork_Private(ds,2*ld,ld,0);
106:   PetscStackCallBLAS("LAPACKtrevc",LAPACKtrevc_("R","S",select,&n,A,&ld,Y,&ld,Y,&ld,&mm,&mout,ds->work,ds->rwork,&info));
107: #endif
108:   SlepcCheckLapackInfo("trevc",info);
109:   if (mout != mm) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Inconsistent arguments");

111:   /* accumulate and normalize eigenvectors */
112:   if (ds->state>=DS_STATE_CONDENSED) {
113:     PetscArraycpy(ds->work,Y,mout*ld);
114:     PetscStackCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,Q,&ld,ds->work,&inc,&szero,Y,&inc));
115: #if !defined(PETSC_USE_COMPLEX)
116:     if (iscomplex) PetscStackCallBLAS("BLASgemv",BLASgemv_("N",&n,&n,&sone,Q,&ld,ds->work+ld,&inc,&szero,Y+ld,&inc));
117: #endif
118:     cols = 1;
119:     norm = BLASnrm2_(&n,Y,&inc);
120: #if !defined(PETSC_USE_COMPLEX)
121:     if (iscomplex) {
122:       norm = SlepcAbsEigenvalue(norm,BLASnrm2_(&n,Y+ld,&inc));
123:       cols = 2;
124:     }
125: #endif
126:     PetscStackCallBLAS("LAPACKlascl",LAPACKlascl_("G",&zero,&zero,&norm,&done,&n,&cols,Y,&ld,&info));
127:     SlepcCheckLapackInfo("lascl",info);
128:   }

130:   /* set output arguments */
131:   if (iscomplex) (*k)++;
132:   if (rnorm) {
133:     if (iscomplex) *rnorm = SlepcAbsEigenvalue(Y[n-1],Y[n-1+ld]);
134:     else *rnorm = PetscAbsScalar(Y[n-1]);
135:   }
136:   return(0);
137: }

139: static PetscErrorCode DSVectors_NHEPTS_Eigen_All(DS ds,PetscBool left)
140: {
142:   PetscInt       i;
143:   PetscBLASInt   n,ld,mout,info,inc=1,cols,zero=0;
144:   PetscBool      iscomplex;
145:   PetscScalar    *A,*Q,*X;
146:   PetscReal      norm,done=1.0;
147:   const char     *back;

150:   PetscBLASIntCast(ds->n,&n);
151:   PetscBLASIntCast(ds->ld,&ld);
152:   if (left) {
153:     A = ds->mat[DS_MAT_B];
154:     Q = ds->mat[DS_MAT_Z];
155:     X = ds->mat[DS_MAT_Y];
156:   } else {
157:     A = ds->mat[DS_MAT_A];
158:     Q = ds->mat[DS_MAT_Q];
159:     X = ds->mat[DS_MAT_X];
160:   }
161:   if (ds->state>=DS_STATE_CONDENSED) {
162:     /* DSSolve() has been called, backtransform with matrix Q */
163:     back = "B";
164:     PetscArraycpy(X,Q,ld*ld);
165:   } else back = "A";
166: #if !defined(PETSC_USE_COMPLEX)
167:   DSAllocateWork_Private(ds,3*ld,0,0);
168:   PetscStackCallBLAS("LAPACKtrevc",LAPACKtrevc_("R",back,NULL,&n,A,&ld,X,&ld,X,&ld,&n,&mout,ds->work,&info));
169: #else
170:   DSAllocateWork_Private(ds,2*ld,ld,0);
171:   PetscStackCallBLAS("LAPACKtrevc",LAPACKtrevc_("R",back,NULL,&n,A,&ld,X,&ld,X,&ld,&n,&mout,ds->work,ds->rwork,&info));
172: #endif
173:   SlepcCheckLapackInfo("trevc",info);

175:   /* normalize eigenvectors */
176:   for (i=0;i<n;i++) {
177:     iscomplex = (i<n-1 && A[i+1+i*ld]!=0.0)? PETSC_TRUE: PETSC_FALSE;
178:     cols = 1;
179:     norm = BLASnrm2_(&n,X+i*ld,&inc);
180: #if !defined(PETSC_USE_COMPLEX)
181:     if (iscomplex) {
182:       norm = SlepcAbsEigenvalue(norm,BLASnrm2_(&n,X+(i+1)*ld,&inc));
183:       cols = 2;
184:     }
185: #endif
186:     PetscStackCallBLAS("LAPACKlascl",LAPACKlascl_("G",&zero,&zero,&norm,&done,&n,&cols,X+i*ld,&ld,&info));
187:     SlepcCheckLapackInfo("lascl",info);
188:     if (iscomplex) i++;
189:   }
190:   return(0);
191: }

193: PetscErrorCode DSVectors_NHEPTS(DS ds,DSMatType mat,PetscInt *j,PetscReal *rnorm)
194: {

198:   switch (mat) {
199:     case DS_MAT_X:
200:       if (ds->refined) SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
201:       else {
202:         if (j) {
203:           DSVectors_NHEPTS_Eigen_Some(ds,j,rnorm,PETSC_FALSE);
204:         } else {
205:           DSVectors_NHEPTS_Eigen_All(ds,PETSC_FALSE);
206:         }
207:       }
208:       break;
209:     case DS_MAT_Y:
210:       if (ds->refined) SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
211:       if (j) {
212:         DSVectors_NHEPTS_Eigen_Some(ds,j,rnorm,PETSC_TRUE);
213:       } else {
214:         DSVectors_NHEPTS_Eigen_All(ds,PETSC_TRUE);
215:       }
216:       break;
217:     case DS_MAT_U:
218:     case DS_MAT_VT:
219:       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
220:     default:
221:       SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_ARG_OUTOFRANGE,"Invalid mat parameter");
222:   }
223:   return(0);
224: }

226: PetscErrorCode DSSort_NHEPTS(DS ds,PetscScalar *wr,PetscScalar *wi,PetscScalar *rr,PetscScalar *ri,PetscInt *k)
227: {
229:   DS_NHEPTS      *ctx = (DS_NHEPTS*)ds->data;
230:   PetscInt       i,j,cont,id=0,*p,*idx,*idx2;
231:   PetscReal      s,t;
232: #if defined(PETSC_USE_COMPLEX)
233:   Mat            A,U;
234: #endif

237:   if (rr && wr != rr) SETERRQ(PetscObjectComm((PetscObject)ds),PETSC_ERR_SUP,"Not implemented yet");
238:   PetscMalloc3(ds->ld,&idx,ds->ld,&idx2,ds->ld,&p);
239:   DSSort_NHEP_Total(ds,ds->mat[DS_MAT_A],ds->mat[DS_MAT_Q],wr,wi);
240: #if defined(PETSC_USE_COMPLEX)
241:   DSGetMat(ds,DS_MAT_B,&A);
242:   MatConjugate(A);
243:   DSRestoreMat(ds,DS_MAT_B,&A);
244:   DSGetMat(ds,DS_MAT_Z,&U);
245:   MatConjugate(U);
246:   DSRestoreMat(ds,DS_MAT_Z,&U);
247:   for (i=0;i<ds->n;i++) ctx->wr[i] = PetscConj(ctx->wr[i]);
248: #endif
249:   DSSort_NHEP_Total(ds,ds->mat[DS_MAT_B],ds->mat[DS_MAT_Z],ctx->wr,ctx->wi);
250:   /* check correct eigenvalue correspondence */
251:   cont = 0;
252:   for (i=0;i<ds->n;i++) {
253:     if (SlepcAbsEigenvalue(ctx->wr[i]-wr[i],ctx->wi[i]-wi[i])>PETSC_SQRT_MACHINE_EPSILON) {idx2[cont] = i; idx[cont++] = i;}
254:     p[i] = -1;
255:   }
256:   if (cont) {
257:     for (i=0;i<cont;i++) {
258:       t = PETSC_MAX_REAL;
259:       for (j=0;j<cont;j++) if (idx2[j]!=-1 && (s=SlepcAbsEigenvalue(ctx->wr[idx[j]]-wr[idx[i]],ctx->wi[idx[j]]-wi[idx[i]]))<t) { id = j; t = s; }
260:       p[idx[i]] = idx[id];
261:       idx2[id] = -1;
262:     }
263:     for (i=0;i<ds->n;i++) if (p[i]==-1) p[i] = i;
264:     DSSortWithPermutation_NHEP_Private(ds,p,ds->mat[DS_MAT_B],ds->mat[DS_MAT_Z],ctx->wr,ctx->wi);
265:   }
266: #if defined(PETSC_USE_COMPLEX)
267:   DSGetMat(ds,DS_MAT_B,&A);
268:   MatConjugate(A);
269:   DSRestoreMat(ds,DS_MAT_B,&A);
270:   DSGetMat(ds,DS_MAT_Z,&U);
271:   MatConjugate(U);
272:   DSRestoreMat(ds,DS_MAT_Z,&U);
273: #endif
274:   PetscFree3(idx,idx2,p);
275:   return(0);
276: }

278: PetscErrorCode DSUpdateExtraRow_NHEPTS(DS ds)
279: {
281:   PetscInt       i;
282:   PetscBLASInt   n,ld,incx=1;
283:   PetscScalar    *A,*Q,*x,*y,one=1.0,zero=0.0;

286:   PetscBLASIntCast(ds->n,&n);
287:   PetscBLASIntCast(ds->ld,&ld);
288:   DSAllocateWork_Private(ds,2*ld,0,0);
289:   x = ds->work;
290:   y = ds->work+ld;
291:   A = ds->mat[DS_MAT_A];
292:   Q = ds->mat[DS_MAT_Q];
293:   for (i=0;i<n;i++) x[i] = PetscConj(A[n+i*ld]);
294:   PetscStackCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&one,Q,&ld,x,&incx,&zero,y,&incx));
295:   for (i=0;i<n;i++) A[n+i*ld] = PetscConj(y[i]);
296:   A = ds->mat[DS_MAT_B];
297:   Q = ds->mat[DS_MAT_Z];
298:   for (i=0;i<n;i++) x[i] = PetscConj(A[n+i*ld]);
299:   PetscStackCallBLAS("BLASgemv",BLASgemv_("C",&n,&n,&one,Q,&ld,x,&incx,&zero,y,&incx));
300:   for (i=0;i<n;i++) A[n+i*ld] = PetscConj(y[i]);
301:   ds->k = n;
302:   return(0);
303: }

305: PetscErrorCode DSSolve_NHEPTS(DS ds,PetscScalar *wr,PetscScalar *wi)
306: {
308:   DS_NHEPTS      *ctx = (DS_NHEPTS*)ds->data;

311: #if !defined(PETSC_USE_COMPLEX)
313: #endif
314:   DSSolve_NHEP_Private(ds,ds->mat[DS_MAT_A],ds->mat[DS_MAT_Q],wr,wi);
315:   DSSolve_NHEP_Private(ds,ds->mat[DS_MAT_B],ds->mat[DS_MAT_Z],ctx->wr,ctx->wi);
316:   return(0);
317: }

319: PetscErrorCode DSSynchronize_NHEPTS(DS ds,PetscScalar eigr[],PetscScalar eigi[])
320: {
322:   PetscInt       ld=ds->ld,l=ds->l,k;
323:   PetscMPIInt    n,rank,off=0,size,ldn;
324:   DS_NHEPTS      *ctx = (DS_NHEPTS*)ds->data;

327:   k = 2*(ds->n-l)*ld;
328:   if (ds->state>DS_STATE_RAW) k += 2*(ds->n-l)*ld;
329:   if (eigr) k += ds->n-l;
330:   if (eigi) k += ds->n-l;
331:   if (ctx->wr) k += ds->n-l;
332:   if (ctx->wi) k += ds->n-l;
333:   DSAllocateWork_Private(ds,k,0,0);
334:   PetscMPIIntCast(k*sizeof(PetscScalar),&size);
335:   PetscMPIIntCast(ds->n-l,&n);
336:   PetscMPIIntCast(ld*(ds->n-l),&ldn);
337:   MPI_Comm_rank(PetscObjectComm((PetscObject)ds),&rank);CHKERRMPI(ierr);
338:   if (!rank) {
339:     MPI_Pack(ds->mat[DS_MAT_A]+l*ld,ldn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
340:     MPI_Pack(ds->mat[DS_MAT_B]+l*ld,ldn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
341:     if (ds->state>DS_STATE_RAW) {
342:       MPI_Pack(ds->mat[DS_MAT_Q]+l*ld,ldn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
343:       MPI_Pack(ds->mat[DS_MAT_Z]+l*ld,ldn,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
344:     }
345:     if (eigr) {
346:       MPI_Pack(eigr+l,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
347:     }
348:     if (eigi) {
349:       MPI_Pack(eigi+l,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
350:     }
351:     if (ctx->wr) {
352:       MPI_Pack(ctx->wr+l,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
353:     }
354:     if (ctx->wi) {
355:       MPI_Pack(ctx->wi+l,n,MPIU_SCALAR,ds->work,size,&off,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
356:     }
357:   }
358:   MPI_Bcast(ds->work,size,MPI_BYTE,0,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
359:   if (rank) {
360:     MPI_Unpack(ds->work,size,&off,ds->mat[DS_MAT_A]+l*ld,ldn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
361:     MPI_Unpack(ds->work,size,&off,ds->mat[DS_MAT_B]+l*ld,ldn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
362:     if (ds->state>DS_STATE_RAW) {
363:       MPI_Unpack(ds->work,size,&off,ds->mat[DS_MAT_Q]+l*ld,ldn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
364:       MPI_Unpack(ds->work,size,&off,ds->mat[DS_MAT_Z]+l*ld,ldn,MPIU_SCALAR,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
365:     }
366:     if (eigr) {
367:       MPI_Unpack(ds->work,size,&off,eigr+l,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
368:     }
369:     if (eigi) {
370:       MPI_Unpack(ds->work,size,&off,eigi+l,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
371:     }
372:     if (ctx->wr) {
373:       MPI_Unpack(ds->work,size,&off,ctx->wr+l,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
374:     }
375:     if (ctx->wi) {
376:       MPI_Unpack(ds->work,size,&off,ctx->wi+l,n,MPIU_SCALAR,PetscObjectComm((PetscObject)ds));CHKERRMPI(ierr);
377:     }
378:   }
379:   return(0);
380: }

382: PetscErrorCode DSGetTruncateSize_NHEPTS(DS ds,PetscInt l,PetscInt n,PetscInt *k)
383: {
384: #if !defined(PETSC_USE_COMPLEX)
385:   PetscScalar *A = ds->mat[DS_MAT_A],*B = ds->mat[DS_MAT_B];
386: #endif

389: #if !defined(PETSC_USE_COMPLEX)
390:   if (A[l+(*k)+(l+(*k)-1)*ds->ld] != 0.0 || B[l+(*k)+(l+(*k)-1)*ds->ld] != 0.0) {
391:     if (l+(*k)<n-1) (*k)++;
392:     else (*k)--;
393:   }
394: #endif
395:   return(0);
396: }

398: PetscErrorCode DSTruncate_NHEPTS(DS ds,PetscInt n,PetscBool trim)
399: {
400:   PetscInt    i,ld=ds->ld,l=ds->l;
401:   PetscScalar *A = ds->mat[DS_MAT_A],*B = ds->mat[DS_MAT_B];

404: #if defined(PETSC_USE_DEBUG)
405:   /* make sure diagonal 2x2 block is not broken */
406:   if (ds->state>=DS_STATE_CONDENSED && n>0 && n<ds->n && A[n+(n-1)*ld]!=0.0 && B[n+(n-1)*ld]!=0.0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"The given size would break a 2x2 block, call DSGetTruncateSize() first");
407: #endif
408:   if (trim) {
409:     if (ds->extrarow) {   /* clean extra row */
410:       for (i=l;i<ds->n;i++) { A[ds->n+i*ld] = 0.0; B[ds->n+i*ld] = 0.0; }
411:     }
412:     ds->l = 0;
413:     ds->k = 0;
414:     ds->n = n;
415:     ds->t = ds->n;   /* truncated length equal to the new dimension */
416:   } else {
417:     if (ds->extrarow && ds->k==ds->n) {
418:       /* copy entries of extra row to the new position, then clean last row */
419:       for (i=l;i<n;i++) { A[n+i*ld] = A[ds->n+i*ld]; B[n+i*ld] = B[ds->n+i*ld]; }
420:       for (i=l;i<ds->n;i++) { A[ds->n+i*ld] = 0.0; B[ds->n+i*ld] = 0.0; }
421:     }
422:     ds->k = (ds->extrarow)? n: 0;
423:     ds->t = ds->n;   /* truncated length equal to previous dimension */
424:     ds->n = n;
425:   }
426:   return(0);
427: }

429: PetscErrorCode DSDestroy_NHEPTS(DS ds)
430: {
432:   DS_NHEPTS      *ctx = (DS_NHEPTS*)ds->data;

435:   if (ctx->wr) { PetscFree(ctx->wr); }
436:   if (ctx->wi) { PetscFree(ctx->wi); }
437:   PetscFree(ds->data);
438:   return(0);
439: }

441: SLEPC_EXTERN PetscErrorCode DSCreate_NHEPTS(DS ds)
442: {
443:   DS_NHEPTS      *ctx;

447:   PetscNewLog(ds,&ctx);
448:   ds->data = (void*)ctx;

450:   ds->ops->allocate        = DSAllocate_NHEPTS;
451:   ds->ops->view            = DSView_NHEPTS;
452:   ds->ops->vectors         = DSVectors_NHEPTS;
453:   ds->ops->solve[0]        = DSSolve_NHEPTS;
454:   ds->ops->sort            = DSSort_NHEPTS;
455:   ds->ops->synchronize     = DSSynchronize_NHEPTS;
456:   ds->ops->gettruncatesize = DSGetTruncateSize_NHEPTS;
457:   ds->ops->truncate        = DSTruncate_NHEPTS;
458:   ds->ops->update          = DSUpdateExtraRow_NHEPTS;
459:   ds->ops->destroy         = DSDestroy_NHEPTS;
460:   return(0);
461: }