This package tests containment of (irreducible) varieties and computes Segre classes, algebraic multiplicity, and Fulton-MacPherson intersection products. More generally, for subschemes of \PP^{n_1}x...x\PP^{n_m}, this package tests if a top-dimensional irreducible component of the scheme associated to an ideal is contained in the scheme associated to another ideal. Specialized methods to test the containment of a variety in the singular locus of another are provided, these methods work without computing the ideal of the singular locus and can provide significant speed-ups relative to the standard methods when the singular locus has a complicated structure. The package works for subschemes of products of projective spaces. The package implements methods described in [1]. More details and relevant definitions can be found in [1].
References:\break [1] Corey Harris and Martin Helmer. "Segre class computation and practical applications." arXiv preprint arXiv:1806.07408 (2018). Link: https://arxiv.org/abs/1806.07408.
This documentation describes version 1.02 of SegreClasses.
The source code from which this documentation is derived is in the file SegreClasses.m2. The auxiliary files accompanying it are in the directory SegreClasses/.
The object SegreClasses is a package.